

A Promoting Effect of Phosphorus-Addition to Cu/SiO₂ on Selective
Synthesis of Formaldehyde by Dehydrogenation of Methanol

Takeshi YAMAMOTO, [†] Akihide SHIMODA, [†] Toshio OKUHARA, and Makoto MISONO ^{*}

Department of Synthetic Chemistry, Faculty of Engineering,

The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113

[†]Polyplastics Co., Ltd., 973 Miyajima, Fuji, Shizuoka 416

Copper supported on SiO₂, which was prepared from Cu(OCOCH₃)₂ and to which P was added, was a selective catalyst (80-85% at about 50% conversion) for the formation of HCHO by the dehydrogenation of CH₃OH at 500 °C. Among various additives such as P, B, K, Li, Mo, and Zn, the addition of P to the Cu/SiO₂ significantly enhanced the rate for the formation of HCHO with an increase in the selectivity.

Formaldehyde is an important raw material in polymer industry. At present, formaldehyde is commercially produced by oxidative dehydrogenation of methanol using a Ag catalyst or a MoO₃-Fe₂O₃ catalyst.¹⁾ However, since the product of this process is an aqueous solution of formaldehyde, an energy-consuming separation process is necessary to obtain pure formaldehyde. Direct dehydrogenation of methanol to formaldehyde has been attempted by use of Cu-Zn-S²) or Cu-Zn-Se³) catalysts at 650 °C, but they are not sufficiently active or selective. Cu exchanged fluoro tetrasilicic mica produced HCHO selectively by this reaction, but the conversion was very low.⁴⁾

We report here that a Cu/SiO₂ catalyst promoted by phosphorus exhibited a high activity and selectivity at rather high conversions for the dehydrogenation of methanol to formaldehyde at 500 °C. Cu/SiO₂ has been known as a good catalyst for the reforming of methanol and water to hydrogen⁵⁾ and dehydrogenation of methanol to methyl formate.⁶⁾

The Cu/SiO₂ catalysts were prepared by two different methods by using SiO₂ gel (Kokusan Kagaku, No. 322899, 150 m²·g⁻¹, pore volume; 0.35 cm³·g⁻¹).⁷⁾ The first method is an incipient wetness impregnation of an aqueous solution of copper acetate (Cu(OCOCH₃)₂) (abbreviated as Cu(Ac)/SiO₂),⁸⁾ or an aqueous solution of Cu(NO₃)₂ (abbreviated as Cu(N)/SiO₂). The second is an ion-exchange method using an aqueous solution of Cu(NH₃)₄(NO₃)₂ (Cu(Am)/SiO₂). For comparison, another catalyst was prepared by the ion-exchange method from ID gel (SiO₂ gel, Fuji Davison, 142 m²·g⁻¹), which was denoted as Cu(Am)/ID. In all cases, the amount of Cu loaded was 1.9 wt%.

After Cu(Ac)/SiO₂ was dried at 100 °C, various additives such as P, B, K, Li, Mo, and Zn were loaded by impregnating it with an aqueous solution of H₃PO₄,

H_3BO_4 , an ethanol solution of K or Li acetate, an aqueous solution of ammonium molybdate, and a methanol solution of $Zn(NO_3)_2$. The atomic ratio of the additives to Cu was usually fixed to 0.2. Only in the cases of P and K, the amounts were varied. The P or K-added $Cu(Ac)/SiO_2$ catalysts were denoted as P- $Cu(Ac)/SiO_2$ or K- $Cu(Ac)/SiO_2$. The catalysts were dried at 100 °C, pretreated in He at 300 °C for 1 h, and reduced in a flowing H_2 at 300 °C for 1 h.

Catalytic dehydrogenation of methanol was carried out in a conventional flow reactor at 500 °C and 1 atm. Methanol (about 380 Torr; 1 Torr = 133 Pa) was supplied into a carrier gas (He) by use of a micropump, and a total flow rate was $30 \text{ cm}^3 \cdot \text{min}^{-1}$. The conversion was controlled by changing the catalyst weight. The products were analyzed by gas chromatography using an APS-201 column (100 °C) for $HCHO$, CH_3OH , dimethyl ether (DME), methyl formate (MeF), and CO_2 . An activated carbon column (100 °C) was used for CO , CH_4 , and CO_2 . For a part of these catalysts, particle size of Cu was measured by transmission electron microscopy (TEM), and the surface area of the Cu particles was determined by the decomposition of N_2O at 90 °C using a pulse technique.⁹⁾ The reliability of the last method was assured for a fine Cu particle ($13 \text{ m}^2 \cdot \text{g}^{-1}$).

The conversion of methanol decreased gradually with time and reached stationary values after about 4 h for all catalysts. The stationary conversions were between one-third and one-half the initial values. At the initial stage of the reaction, CO as well as $HCHO$ was appreciably formed, mainly due to the high conversion. Then CO decreased gradually with time, and $HCHO$ increased. A stationary selectivity was reached after 4 h. Therefore, the activity and selectivity were estimated from the data at 6 h. The activity was about three times as high as those of $Cu(Ac)/SiO_2$ and $Cu(N)/SiO_2$.

Figure 1 shows the dependence of the selectivity to $HCHO$ on the conversion over Cu/SiO_2 catalysts. An appreciable amount of DME (the selectivity was 7-40% at 24-90% conversion) was formed over $Cu(Am)/SiO_2$ and $Cu(Am)/ID$, while the formation of DME was less than 5% for $Cu(Ac)/SiO_2$ and $Cu(N)/SiO_2$ up to 80% conversion. The selectivity given in Fig. 1 is calculated for the products other than DME. At low conversions, the selectivity was high for all catalysts. However, the selectivities for $Cu(Am)/SiO_2$ and $Cu(Am)/ID$ decreased rapidly as the conversion increased, due to its conversion to CO. On the other hand, in the other cases, the selectivity decreased much less with the conversion. The difference between the two groups may be due to the difference in the dispersion and/or oxidation state of Cu. Here, we attempted to improve the catalytic performance of $Cu(Ac)/SiO_2$ by several additives.

The results are summarized in Table 1. The additions of B, Zn, Mo, K, and Li did not influence the activity much and slightly lowered the selectivity. Contrary to these additives, P enhanced remarkably the formation of $HCHO$; the activity increased by a factor of about 7 (from the correlation of conversion-W/F at low conversions), and the selectivity to $HCHO$ retained its high values ($\geq 80\%$) at higher conversions. When the selectivity was compared at the same conversion level, the selectivity was also a little improved (Fig. 1).

The influence of the atomic ratio of P to Cu on the activity and the

selectivity is shown in Fig. 2. The activity showed a maximum value at $P/Cu = 0.2$ and decreased markedly at $P/Cu \geq 0.66$. As for the selectivity to HCHO, it was about 80% in the range of $0 \leq P/Cu \leq 0.4$, but was very low for $P/Cu \geq 0.66$, at which DME was mainly formed. For comparison, the influence of K/Cu ratio in $K-Cu(Ac)/SiO_2$ was examined. When K/Cu increased from 0 to 1, both activity and selectivity decreased greatly.

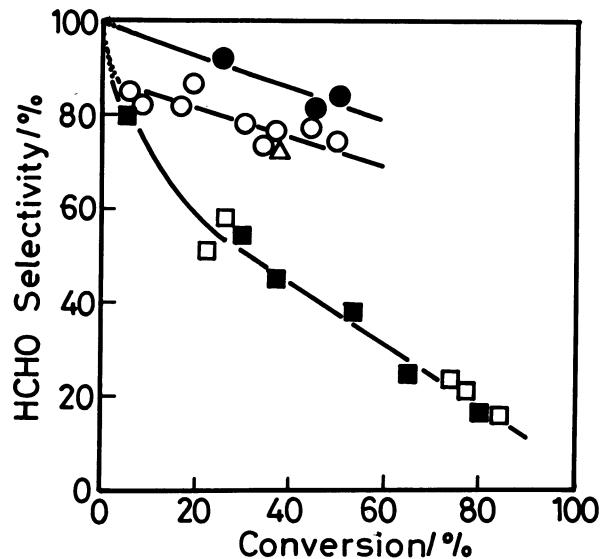


Fig. 1. Dependence of HCHO selectivity on the %-conversion of dehydrogenation of methanol over Cu/SiO_2 catalysts ($500\text{ }^\circ\text{C}$).
 ○: $Cu(Ac)/SiO_2$, △: $Cu(N)/SiO_2$,
 □: $Cu(Am)/SiO_2$, ■: $Cu(Am)/ID$
 ●: $P-Cu(Ac)/SiO_2$ ($P/Cu = 0.2$)
 (see text). The selectivity was calculated in the products other than dimethyl ether.

Table 1. Effect of Additives to $Cu(Ac)/SiO_2$ on the Activity and Selectivity in Dehydrogenation of Methanol at $500\text{ }^\circ\text{C}$

Additives ^{a)}	W/F ^{b)}	Conv./%	Selectivity/% ^{c)}					
			HCHO	CO	CO_2	CH_4	DME ^{d)}	MeF ^{e)}
None	4.3	15.0	82.2	11.9	1.1	5.2	0	0
	8.3	30.0	81.8	10.6	1.0	5.6	0	0.6
P	0.8	24.8	91.6	1.2	0.4	4.0	0	2.8
	4.2	51.5	83.8	6.7	0.7	5.6	0.3	2.9
B	8.3	36.8	79.6	12.2	1.7	6.2	0.3	0
K	8.3	31.0	71.7	21.1	0.9	6.3	0	0
Li	8.3	38.2	78.2	13.9	1.8	6.1	0	0
Zn	8.3	28.4	73.2	14.6	2.8	5.2	1.1	3.1
Mo	8.3	20.9	70.4	18.1	1.5	9.2	0.8	0

a) Additives/Cu = 0.2 in atomic ratio. b) g-cat.h. \cdot mol $^{-1}$.

c) On the basis of C_1 . d) Dimethyl ether. e) Methyl formate.

The average particle sizes measured by TEM were $35\text{ }\text{\AA}$ and $48\text{ }\text{\AA}$ for Cu on $Cu(Ac)/SiO_2$ and $P-Cu(Ac)/SiO_2$ having $P/Cu = 0.2$, respectively, showing that the difference in the particle size was small. The surface area of Cu on $Cu(Ac)/SiO_2$ was $157\text{ m}^2\cdot\text{g}^{-1}$ as determined by the N_2O decomposition method.⁹⁾ This value corresponds to the particle size of about $43\text{ }\text{\AA}$, which is nearly equal

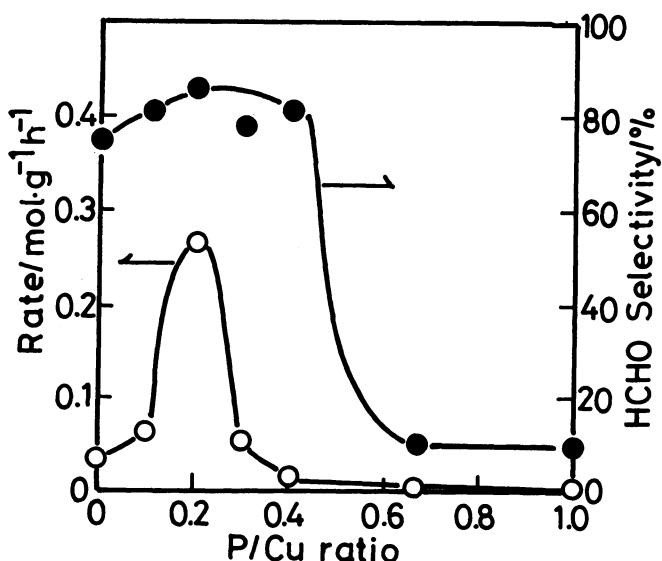


Fig. 2. Effect of the P/Cu ratio on rate and selectivity in dehydrogenation of methanol over P-Cu/SiO₂ catalyst (500 °C). The conversions were 50, 40, 52, 35, 15, 3, and 8% for P/Cu ratio of 0, 0.1, 0.2, 0.3, 0.4, 0.66, and 1.0, respectively.

to that obtained from TEM. On the other hand, the surface area of Cu on the P-Cu(Ac)/SiO₂ determined by the N₂O method was only 7 m²·g⁻¹, while the particle size from TEM little changed. This great decrease of the surface area indicates that a certain phosphorus compound such as Cu₃(PO₄)₂ which was formed during the preparation process covered the surface of the Cu particle and kept Cu in an oxidized state in the case of P-Cu(Ac)/SiO₂, and inhibited the decomposition of N₂O.

The authors gratefully acknowledge Mr. Hideo Tsunakawa of the Engineering Research Institute of the University of Tokyo for the measurements of electron micrographs. A part of this work has preliminarily been reported at the 52nd National Meeting of the Chemical Society of Japan, April, 1986, Abstr., No. 2B01.

References

- 1) M. Chono and T. Yamamoto, *Shokubai*, 23, 3 (1981).
- 2) Jpn. Patent 51-1407; 51-76209.
- 3) Jpn. Patent 52-215.
- 4) K. Takagi, Y. Morikawa, and T. Ikawa, *Chem. Lett.*, 1985, 527.
- 5) H. Kobayashi, N. Takezawa, and C. Minochi, *J. Catal.*, 69, 487 (1981).
- 6) T. Sodesawa, M. Nagacho, A. Onodera, and F. Nozaki, *J. Catal.* 102, 460 (1986).
- 7) This SiO₂ contained the following impurities; Na₂O (0.17% in weight), CaO (0.07%), Fe (0.02%), and Al₂O₃ (0.04%).
- 8) N. Kakuta and A. Kazusaka, *J. Chem. Soc., Faraday Trans. 1*, 80, 3245 (1984).
- 9) J. J. F. Scholten and J. A. Konvalinka, *Trans. Faraday Soc.*, 65, 2465 (1969).

(Received November 6, 1987)